Centrifugal force on an orbiting body

Measuring with the central force apparatus

Objects of the experiments
- Measuring the centrifugal force F on an orbiting body as a function of the angular speed ω.
- Measuring the centrifugal force F as a function of the path radius r.
- Measuring the centrifugal force F as a function of the mass m.

Principles

The centrifugal force acting on an orbiting body is

$$F = m \cdot \omega^2 \cdot r$$

where m is the mass of the body, ω its angular speed and r the radius of the orbit. In the central force apparatus, the centrifugal force on a test body is transmitted via an angled lever and a toe bearing to a leaf spring with strain gauge. The transmission ratio of the lever system is chosen so that changes in the path radius r of the orbiting body are negligible. The force acting on the strain gauge is measured by means of a newtonmeter. The analogue output signal of the newtonmeter is connected to the Y input of an XY recorder. A tachymeter connected to the central force apparatus measures the angular speed and supplies an analogue signal, which is fed to the X input of the recorder.

At a constant path radius r and a constant mass m, the parabolic shape of the curve recorded confirms the proportionality

$$F \propto \omega^2$$

Measurements at different path radii r and with different masses m confirm the proportionalities

$$F \propto r$$

and

$$F \propto m$$
Setup

The newtonmeter must warm up for at least 15 minutes before the experiment starts:
Swich on the newtonmeter with the central force apparatus connected.

The experimental setup is illustrated in Fig. 1.
- Fix the central force unit in the bench clamp, and connect it to the newtonmeter via the multicore cable; connect the analogue output of the newtonmeter to the Y input of the recorder (y-axis: 1 V/cm), and switch the newtonmeter on.
- Connect the drive motor (a) to the low-voltage power supply paying attention to the polarity.
- Screw the holding clamp of the tachymeter (b) into the tapped hole of the central force apparatus.
- Mount the motion sensor (c), and see to it that the contact between its running wheel and the O-ring of the central force unit is perfect.
- Connect the measuring unit (d), and feed its output to the X input of the recorder (x-axis: 0.1 V/cm).

The central force apparatus is driven by the O-ring at the radius $r = 10$ cm. The transmission ratio between the rotational speeds of the tachymeter and the central force unit is 4:1. Therefore, the angular speed ω of the central force apparatus is 25 s$^{-1}$ when the tachymeter displays the orbital velocity $v = 1$ m s$^{-1}$.

Carrying out the experiment

a) The centrifugal force F as a function of the angular speed ω:
- Make the zero compensation by setting the pushbutton COMPENSATION of the newtonmeter to SET.
- Fix the mass $m = 100$ g at the distance $r = 25$ cm from the axis of rotation.
- Switch the recorder on, and lower the recording stylus.
- Set the output voltage of the low voltage power supply to zero, and switch the low voltage power supply on.
- Slowly increasing the output voltage, record the measurement curve.
- Lift the recording stylus, and set the output voltage back to zero.
- Vary the radius r, for example, and record other measurement curves. Afterwards switch the recorder off.
b) The centrifugal force F as a function of the radius r:
- Repeat the zero compensation of the newtonmeter.
- Fix the mass $m = 50$ g at the distance $r = 25$ cm from the axis of rotation.
- Increase the output voltage until the tachymeter displays $v = 0.6$ m s$^{-1}$ (that is $\omega = 15$ s$^{-1}$).
- Measure the force F, and take it down.
- Decrease the distance r in steps 5 cm down to 5 cm. Each time adjust the same angular speed, and repeat the measurement.

c) The centrifugal force F as a function of the mass m:
- Repeat the zero compensation of the newtonmeter.
- Fix the mass $m = 50$ g at the distance $r = 15$ cm from the axis of rotation.
- Increase the output voltage until the tachymeter displays $v = 0.6$ m s$^{-1}$ (that is $\omega = 15$ s$^{-1}$).
- Measure the force F, and take it down.
- Mount the masses 75 g and 100 g, adjust the same angular speed in each case and repeat the measurement.

Measuring example and evaluation

a) The centrifugal force F as a function of the angular speed ω:
Fig. 2 shows the measurement curves recorded with the recorder. The parabolic shape of the curves confirms the proportionality $F \propto \omega^2$.

<table>
<thead>
<tr>
<th>r (cm)</th>
<th>F (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>10</td>
<td>1.4</td>
</tr>
<tr>
<td>15</td>
<td>2.2</td>
</tr>
<tr>
<td>20</td>
<td>2.9</td>
</tr>
<tr>
<td>25</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Fig. 3 is a plot of the measuring values from Table 1. Within the accuracy of measurement, they agree with the straight line drawn through the origin, that is, $F \propto r$.

c) The centrifugal force F as a function of the mass m:

Table 2: The centrifugal force as a function of the mass m
($r = 15\, \text{cm}, \omega = 15\, \text{s}^{-1}$)

<table>
<thead>
<tr>
<th>m [g]</th>
<th>F [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2.2</td>
</tr>
<tr>
<td>75</td>
<td>3.2</td>
</tr>
<tr>
<td>100</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Fig. 3 is a plot of the measuring values from Table 2. The agreement with the straight line drawn through the origin confirms the proportionality $F \propto m$.

Fig. 4 The centrifugal force F as a function of the mass m
($r = 15\, \text{cm}, \omega = 15\, \text{s}^{-1}$)