Determining the coefficient of static friction using the inclined plane

Objects of the experiment

- Determining the coefficient of static friction μ from the equilibrium between the force along the plane and the static friction force on an inclined plane

Principles

A body on an inclined plane with the weight G is subject to a force along the plane (parallel to the plane) of

$$F_1 = G \cdot \sin \alpha$$ \hspace{1cm} (I)

and to a force normal (perpendicular) to the plane of

$$F_2 = G \cdot \cos \alpha$$ \hspace{1cm} (II)

This dependency on the angle of inclination α can be used to determine quantitatively the coefficient of friction μ of the body. The angle of inclination of the plane is increased by moving the support until the body just begins to slide, i.e. the force F_1 along the plane and the static friction force F are in equilibrium. In this experiment the tangent of the angle of inclination is determined from the height $h = 5 \text{ cm}$ of the support and its distance s from the pivot of the inclined plane are measured.

$$\tan \alpha = \frac{h}{s}$$ \hspace{1cm} (III)

The static friction force is generally taken to be proportional to the force F_2 along the plane:

$$F = \mu \cdot F_2$$ \hspace{1cm} (IV)

From the equilibrium of forces $F_1 = F$ we can deduce:

$$F_1 = \mu \cdot F_2$$ \hspace{1cm} (V)

μ: coefficient of friction
and thus from (I), (II) and (III)

$$\mu = \frac{h}{s}$$ \hspace{1cm} (VI).

Fig. 1 Equilibrium between the force F_1 along the plane and the static friction force F on an inclined plane.
Setup and carrying out the experiment

- Set up the inclined plane and move the support (a) to the farthest possible point from the pivot.
- Place block 1 (6 cm thick) on the inclined plane with the plastic-coated side down and slowly move the support inward until the block starts to slide.
- Measure the distance between the pivot and the support using the tape measure and calculate the coefficient of static friction using equation (VI).
- Place block 1 on the plane with the wooden side down and repeat the experiment.
- Place block 2 (3 cm thick) on the inclined plane with the plastic-coated side down and repeat the experiment.
- Turn the wooden surface with the area $A = 12 \times 6 \text{ cm}^2$ down and repeat the experiment.
- Turn the wooden surface with the area $A = 12 \times 3 \text{ cm}^2$ down and repeat the experiment.

Measuring example and evaluation

<table>
<thead>
<tr>
<th>Block</th>
<th>Material</th>
<th>A_{cm^2}</th>
<th>s_{cm}</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plastic</td>
<td>12×6</td>
<td>10.5</td>
<td>0.48</td>
</tr>
<tr>
<td>1</td>
<td>Wood</td>
<td>12×6</td>
<td>21.9</td>
<td>0.23</td>
</tr>
<tr>
<td>2</td>
<td>Plastic</td>
<td>12×6</td>
<td>9.5</td>
<td>0.53</td>
</tr>
<tr>
<td>2</td>
<td>Wood</td>
<td>12×6</td>
<td>20.7</td>
<td>0.24</td>
</tr>
<tr>
<td>2</td>
<td>Wood</td>
<td>12×3</td>
<td>21.1</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Results

The coefficient of static friction depends on the material of the contact surface, but not on its surface area.

Fig. 2 Experiment setup for determining the coefficient of friction on an inclined plane