Determining the density of air

Objects of the experiments
- Measuring the mass of the open glass sphere filled with air.
- Measuring the mass of the evacuated glass sphere.
- Determining the density of air from the mass difference and the volume of the glass sphere.

Principles

Depending on the state of aggregation of a homogeneous substance, different methods are applied to determine its density

\[\rho = \frac{m}{V} \]
\(\text{II.} \)

\(m \): mass, \(V \): volume

In most cases, the mass and the volume are measured separately.

In this experiment, the density of air in a glass sphere of known volume \(V \) is determined. The mass \(m \) of the air enclosed in the sphere is determined from the mass difference between the total mass \(m_1 \) of the sphere filled with air and the mass \(m_2 \) of the empty (evacuated) sphere:

\[m = m_1 - m_2 \]
\(\text{II.} \)

Setup and carrying out the experiment

The experimental setup is illustrated in Fig. 1.

- Connect the hand vacuum and pressure pump, and evacuate the sphere with 2 cocks as far as possible (see Fig. 1 middle, the hand vacuum and pressure pump displays the differential pressure \(\Delta p \) relative to the outside air pressure).
- Close the open cock \(\text{(a)} \), and remove the hand vacuum and pressure pump.
- Put the sphere with 2 cocks on the scale pan again, and determine the mass \(m_2 \) of the empty sphere (see Fig. 1 right).

Measuring example

Total mass : \(m_1 = 253.94 \, \text{g} \)
Mass of the empty sphere * : \(m_2 = 252.83 \, \text{g} \)

* measured at \(p = 1000 \, \text{mbar} - \Delta p = 50 \, \text{mbar} \)

Evaluation

Mass of the enclosed air : \(m = 1.11 \, \text{g} \)
Volume of the enclosed air : \(V = 1000 \, \text{ml} = 1000 \, \text{cm}^3 \)

From Eq. (I) we obtain \(\rho = 0.0011 \, \frac{\text{g}}{\text{cm}^3} = 1.1 \, \frac{\text{kg}}{\text{m}^3} \)

Value quoted in the literature:

\(\rho = 1.29 \, \frac{\text{kg}}{\text{m}^3} \) (density of dry air under normal conditions)

Results

Air, too, has a density. Under normal conditions it is approximately one thousandth the density of water.

Fig. 1 Experimental setup for determining the density of air