Le manomètre de précision est un manomètre à pression différentielle. Avec la sonde manométrique, il permet la mesure de la pression statique de la pression totale et de la pression dynamique de gaz en écoulement. Une deuxième échelle donne la lecture directe de la vitesse d'écoulement lors des mesures.

Les dimensions de ces appareils sont adaptées à la série d'appareils pour la "dynamique des fluides" (373 04 et suivants).

1 Remarques de sécurité

⚠️ Lire attentivement le mode d'emploi!

- Selon l'ordonnance Arb Staff V (R.F.A.) sur le travail avec des matériaux dangereux, le liquide du manomètre n'est pas dangereux pour la santé quand il est utilisé correctement, cependant il ne faut ni le boire ni le respirer et il est conseillé de laver à fond les endroits de la peau qui ont été en contact avec ce produit. Le liquide du manomètre est nocif pour l'eau dans le sens de la loi allemande sur les eaux WHG); elle ne doit pas être évacuée dans la canalisation. Veuillez consulter les directives légales concernant l'élimination des produits chimiques (huile minérale).

- N'utiliser que le liquide fourni avec le manomètre pour ne pas déregler l'étalonnage.

- Manipuler avec grande précaution toutes les pièces en verre! En particulier, enfoncer les tuyaux sur la tubulure à olive avec la plus grande prudence et de quelques millimètres seulement!

- Remettre les capuchons en matière plastique dès que le manomètre n'est plus en service!

2.1 Manomètre de précision

(1.1) Bac de réserve pour le liquide du manomètre

(1.2) Tubulure à olive, Ø 8 mm, pour remplir avec le liquide du manomètre et en tant que raccord de tuyaux pour la mesure de surpression

(1.3) Echelle de lecture de la vitesse d'écoulement 0 - 22 m/s², graduation en 1 m/s²

(1.4) Ecrou moleté pour le blocage du manomètre d'après l'ajustement horizontal

(1.5) Tubulure à olive, Ø 8 mm, pour le raccordement de tuyaux pour la mesure de dépression

Fig. 1

(1.6) Niveau à bulle pour l'ajustement horizontal du manomètre

(1.7) Echelle de pression, 0 - 310 Pa (c'est-à-dire 0 à 3,1 mbar), résolution 1 Pa, graduation 5 Pa

Sur l'arrière:

(1.8) Equerre en tôle pour la fixation du manomètre avec une noix Leybold (300 01) sur un élément d'un pied

(1.9) Seringue avec tuyau pour remplir et vider le bac de réserve (1.1)

Sans illustration:
Bouteille avec liquide de manomètre
Tuyau en matière plastique Ø 8 mm
2 capuchons en caoutchouc pour fermer le manomètre

Encombrement: 49 cm x 19 cm
Masse: env. 0,9 kg
2.2 Sonde manométrique (373 13)

(2.1) Sonde de pression totale;
Ouverture de la sonde orientée contre l'écoulement.

(2.2) Sonde pour pression statique;
Ouverture de la sonde perpendiculaire à l'écoulement.

(2.3) Support avec cheville 4 mm pour la fixation de la sonde sur le chariot de mesure
(issu des accessoires 1 pour l'aérodynamique, 373 07)

Sans illustration:
2 tuyaux en matière plastique, Ø 8 mm, pour le raccordement de la sonde à un manomètre
Encombrement: 18 cm x 13 cm x 5 cm
Masse: 0,1 kg

Fig. 2

3 Utilisation

Respecter les remarques de sécurité
(section 1)

3.1 Orientation et remplissage du manomètre

Maintenir le manomètre dans un système de fixation. Desserrer l'écrou moleté (1.4). Orienter EXACTEMENT en position horizontale à l'aide du niveau à bulle (1.6) et resserrer l'écrou moleté sans modifier la position.

Pousser le piston de la seringue jusqu'à la butée et aspirer le liquide pour manomètre contenu dans la bouteille par le truchement d'un tuyau, en retirant le piston.

Introduire le tuyau dans le bac de réserve (1.1) et le remplir lentement, jusqu'à ce que le ménisque atteigne la marque 0 des échelles. Attendre quelques secondes jusqu'à ce que l'indication soit stationnaire. Le cas échéant, assurer les bulles d'air et, si nécessaire, rajouter du liquide ou en retirer à nouveau.

Important: Humidifier les tubes capillaires avant les mesures avec du liquide pour manomètre; pour ce faire, incliner le manomètre et le remettre ensuite à l'horizontale.

3.2 Mesure de surpression, dépression et pression différentielle

Mesure de surpression (fig. 3):
Raccorder le tuyau à l'olive (1.2) et au point de mesure, par exemple le tube de Venturi (373 09).

Mesure de dépression (fig. 4):
Raccorder le tuyau à l'olive (1.5) et au point de mesure, (ici la sonde de pression totale (2.1), de la sonde manométrique).

Mesure de pression différentielle (fig. 5):
Raccorder les deux olives du manomètre de précision.
Dans l'exemple représenté, l'olive (1.2) est reliée avec la sonde de pression totale, l'olive (1.5) est reliée avec la sonde pour pression statique. Le manomètre indique alors la différence entre la pression totale et la pression statique, "la pression dynamique".

3.3 Mesure de la vitesse d'écoulement

Procéder comme pour la mesure de la pression différentielle (cf. section 3.2), cependant, il faut alors soin lire l'échelle des vitesses d'écoulement (1.3) du manomètre de précision ou, ce qui est plus exact, calculer la vitesse d'écoulement à partir de la pression dynamique Δp, lue sur l'échelle de pression (1.7):

\[v = \sqrt{\frac{2 \Delta p}{\rho}} \]

3.4 Support de la sonde manométrique sur le chariot de mesure (issue de 373 07)

Enfiler la fiche 4 mm du support dans la douille 4 mm correspondante du chariot de mesure (fig. 6);
Ajuster ensuite la position verticale de la sonde en la déplaçant dans le support.

Fig. 6